![]() |
JOURNAL TOOLS |
Publishing options |
eTOC |
To subscribe |
Submit an article |
Recommend to your librarian |
ARTICLE TOOLS |
Publication history |
Reprints |
Permissions |
Cite this article as |
Share |

YOUR ACCOUNT
YOUR ORDERS
SHOPPING BASKET
Items: 0
Total amount: € 0,00
HOW TO ORDER
YOUR SUBSCRIPTIONS
YOUR ARTICLES
YOUR EBOOKS
COUPON
ACCESSIBILITY
ORIGINAL ARTICLE
Minerva Dental and Oral Science 2024 August;73(4):194-9
DOI: 10.23736/S2724-6329.24.04826-5
Copyright © 2024 EDIZIONI MINERVA MEDICA
language: English
Apoptotic effects of biodentine, calcium-enriched mixture (CEM) cement, ferric sulfate, and mineral trioxide aggregate (MTA) on human mesenchymal stem cells isolated from the human pulp of exfoliated deciduous teeth
Bahareh NAZEMI SALMAN 1, Mahshid MOHEBBI RAD 2 ✉, Ehsan SABURI 3
1 School of Dentistry, Department of Pediatric Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran; 2 School of Dentistry, Department of Orthodontics, Hamadan University of Medical Sciences, Hamadan, Iran; 3 School of Medicine, Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
BACKGROUND: Preservation of primary teeth in children is highly important. Pulpotomy is a commonly performed treatment procedure for primary teeth with extensive caries. Thus, biocompatibility of pulpotomy agents is highly important. Biodentine, calcium enriched mixture (CEM) cement, ferric sulfate, and mineral trioxide aggregate (MTA) Angelus are commonly used for this purpose. Thus, this study aimed to assess the apoptotic effects of Biodentine, CEM cement, ferric sulfate, and MTA on stem cells isolated from the human pulp of exfoliated deciduous teeth.
METHODS: In this in-vitro, experimental study, stem cells isolated from the human pulp of exfoliated deciduous teeth were exposed to three different concentrations of Biodentine, CEM cement, ferric sulfate, and MTA for different time periods. The cytotoxicity of the materials was evaluated by flow cytometry using the annexin propidium iodide (PI) kit. Data were analyzed by ANOVA and Tukey’s test at P<0.05 level of significance.
RESULTS: All four tested materials induced significantly greater apoptosis compared with the control group. The difference in cell apoptosis caused by the first concentration of ferric sulfate and MTA was not significant at 24 hours. In other comparisons, the cytotoxicity of ferric sulfate was significantly lower than that of other materials. Biodentine showed higher cytotoxicity than MTA at first; but this difference faded over time. The cytotoxicity of CEM cement was comparable to that of MTA. The highest cell viability was noted at 24 hours in presence of the minimum concentration of ferric sulfate. The lowest cell viability was noted at 72 hours in presence of the maximum concentration of CEM cement.
CONCLUSIONS: In comparison with other materials, ferric sulfate showed minimum cytotoxicity; the cytotoxicity of the three cements was comparable. It appears that the concentration of ferric sulfate and the composition of cements are responsible for different levels of cytotoxicity.
KEY WORDS: Dental cements; Apoptosis; Immunologic cytotoxicity; Dental pulp; Stem cells